次の連立方程式を解け.
1 $4x+y=7 \andm 2x+3y=2$
2 $x^2+xy+1=0 \andm x^2-x-y=0$
目次
1
\begin{eqnarray*}
&&\begin{cases} 4x+y=7 \\ 2x+3y=2\end{cases} \\
&\Llra& \begin{cases} 4x+y=7 \\ 4x+6y=4\end{cases}\\
&\Llra& \begin{cases} 4x+y=7 \\ 5y=-3\end{cases}\\
&\Llra& \begin{cases} 4x+y=7 \\ y=-\bunsuu{3}{5}\end{cases}\\
&\Llra& \begin{cases} 4x-\bunsuu{3}{5}=7 \\ y=-\bunsuu{3}{5}\end{cases}\\
&\Llra& \begin{cases} 4x=\bunsuu{38}{5} \\ y=-\bunsuu{3}{5}\end{cases}\\
&\Llra& \begin{cases} x=\bunsuu{19}{10} \\ y=-\bunsuu{3}{5}\end{cases}\\
\end{eqnarray*}
2
\begin{eqnarray*}
&&\begin{cases} x^2+xy+1=0 \\ x^2-x-y=0\end{cases} \\
&\Llra& \begin{cases} x^2+xy+1=0 \\ y=x^2-x\end{cases}\\
&\Llra& \begin{cases} x^2+x(x^2-x)+1=0 \\ y=x^2-x\end{cases}\\
&\Llra& \begin{cases} x^3+1=0 \\ y=x^2-x\end{cases}\\
&\Llra& \begin{cases} x=-1 \orm x=\bunsuu{-1\pm \sqrt{3}i}{2} \\ y=x^2-x\end{cases}\\
&\Llra& \begin{cases} x=-1 \\ y=2\end{cases} \orm \begin{cases} x=\bunsuu{-1+\sqrt{3}i}{2} \\ y=-\sqrt{3}i\end{cases}\orm \begin{cases} x=\bunsuu{-1-\sqrt{3}i}{2} \\ y=\sqrt{3}i\end{cases}
\end{eqnarray*}